Deterministic compressive sampling for high-quality image reconstruction of ultrasound tomography

نویسندگان

  • Quang-Huy Tran
  • Huu Tue Huynh
  • Long Ton That
  • Tran Duc Tan
چکیده

BACKGROUND A well-known diagnostic imaging modality, termed ultrasound tomography, was quickly developed for the detection of very small tumors whose sizes are smaller than the wavelength of the incident pressure wave without ionizing radiation, compared to the current gold-standard X-ray mammography. Based on inverse scattering technique, ultrasound tomography uses some material properties such as sound contrast or attenuation to detect small targets. The Distorted Born Iterative Method (DBIM) based on first-order Born approximation is an efficient diffraction tomography approach. One of the challenges for a high quality reconstruction is to obtain many measurements from the number of transmitters and receivers. Given the fact that biomedical images are often sparse, the compressed sensing (CS) technique could be therefore effectively applied to ultrasound tomography by reducing the number of transmitters and receivers, while maintaining a high quality of image reconstruction. METHODS There are currently several work on CS that dispose randomly distributed locations for the measurement system. However, this random configuration is relatively difficult to implement in practice. Instead of it, we should adopt a methodology that helps determine the locations of measurement devices in a deterministic way. For this, we develop the novel DCS-DBIM algorithm that is highly applicable in practice. Inspired of the exploitation of the deterministic compressed sensing technique (DCS) introduced by the authors few years ago with the image reconstruction process implemented using l 1 regularization. RESULTS Simulation results of the proposed approach have demonstrated its high performance, with the normalized error approximately 90% reduced, compared to the conventional approach, this new approach can save half of number of measurements and only uses two iterations. Universal image quality index is also evaluated in order to prove the efficiency of the proposed approach. CONCLUSIONS Numerical simulation results indicate that CS and DCS techniques offer equivalent image reconstruction quality with simpler practical implementation. It would be a very promising approach in practical applications of modern biomedical imaging technology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Methods to evaluate the performance of kilovoltage cone-beam computed tomography in the three-dimensional reconstruction space

Background: Cone-beam computed tomography (CBCT) scanners for image-guided radiotherapy are in clinical use today, but there has been no consensus on uniform acceptance to verify the CBCT image quality yet. The present work proposed new methods to fully evaluate the performance of CBCT in its three-dimensional (3D) reconstruction space. Materials and Methods: Compared to the traditional methods...

متن کامل

Image reconstruction by deterministic compressed sensing with chirp matrices†

A recently proposed approach for compressed sensing, or compressive sampling, with deterministic measurement matrices made of chirps is applied to images that possess varying degrees of sparsity in their wavelet representations. The “fast reconstruction” algorithm enabled by this deterministic sampling scheme as developed by Applebaum et al. [1] produces accurate results, but its speed is hampe...

متن کامل

Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images

Compressive sensing theory enables faithful reconstruction of signals, sparse in domain Ψ, at sampling rate lesser than Nyquist criterion, while using sampling or sensing matrix Φ which satisfies restricted isometric property. The role played by sensing matrix Φ and sparsity matrix Ψ is vital in faithful reconstruction. If the sensing matrix is dense then it takes large storage space and leads ...

متن کامل

Optimal compressed sensing reconstructions of fMRI using 2D deterministic and stochastic sampling geometries

BACKGROUND Compressive sensing can provide a promising framework for accelerating fMRI image acquisition by allowing reconstructions from a limited number of frequency-domain samples. Unfortunately, the majority of compressive sensing studies are based on stochastic sampling geometries that cannot guarantee fast acquisitions that are needed for fMRI. The purpose of this study is to provide a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017